Capítulo 7 - Soluciones Termodinámica Cengel & Boles 7ma edición - Chapter 7 - Solution Cengel Boles.

7-1C ¿La integral cíclica del trabajo tiene que ser cero (es decir, un sistema tiene que producir tanto trabajo como consume para completar un ciclo)? Explique. Get solution

7-2C Un sistema experimenta un proceso entre dos estados especificados, primero de manera reversible y luego de manera irreversible. ¿Para cuál caso es mayor el cambio de entropía? ¿Por qué? Get solution

7-3C ¿El valor de la integral _1 2 dQ/T es el mismo para todos los procesos entre los estados 1 y 2? Explique. Get solution

7-4C Para determinar el cambio de entropía para un proceso irreversible entre los estados 1 y 2, ¿debe realizarse la integral _1 2 dQ/T a lo largo de la trayectoria real del proceso o a lo largo de una trayectoria reversible imaginaria? Get solution

7-5C ¿Un proceso isotérmico necesariamente es reversible internamente? Explique su respuesta con un ejemplo. Get solution

7-6C ¿Cómo se comparan los valores de la integral _1 2 dQ/T para un proceso reversible y un irreversible entre los mismos estados inicial y final? Get solution

7-7C La entropía de una patata horneada caliente disminuye al enfriarse. ¿Es ésta una violación del principio del incremento de entropía? Explique. Get solution

7-8C ¿Es posible crear entropía? ¿Es posible destruirla? Get solution

7-9C Cuando un sistema es adiabático, ¿qué se puede decir acerca del cambio de entropía de la sustancia en el sistema? Get solution

7-10C El trabajo es libre de entropía, y algunas veces se afirma que el trabajo no cambia la entropía de un fluido que pasa a través de un sistema adiabático de flujo estacionario con una sola entrada y una sola salida. ¿Es ésta una afirmación válida? Get solution

7-11C Un dispositivo de cilindro-émbolo contiene gas helio. Durante un proceso reversible isotérmico, la entropía del helio (nunca, a veces, siempre) aumentará. Get solution

7-12C Un dispositivo de cilindro-émbolo contiene gas nitrógeno. Durante un proceso reversible adiabático, la entropía del nitrógeno (nunca, a veces, siempre) aumentará. Get solution

7-13C Un dispositivo de cilindro-émbolo contiene vapor de agua sobrecalentado. Durante un proceso real adiabático, la entropía del vapor (nunca, a veces, siempre) aumentará. Get solution

7-14C La entropía del vapor de agua (aumentará, disminuirá, quedará igual) cuando fluye por una turbina real adiabática. Get solution

7-15C La entropía del fluido de trabajo del ciclo ideal de Carnot (aumenta, disminuye, queda igual) durante el proceso isotérmico de adición de calor. Get solution

7-16C La entropía del fluido de trabajo del ciclo ideal de Carnot (aumenta, disminuye, queda igual) durante el proceso isotérmico de rechazo de calor. Get solution

7-17C Durante un proceso de transferencia térmica, la entropía de un sistema (siempre, a veces, nunca) aumenta. Get solution

7-18C El vapor de agua se acelera al fluir por una tobera real adiabática. La entropía del vapor en la salida será (mayor que, igual a, menos que) la entropía en la entrada de la tobera. Get solution

7-19C ¿Es posible que el cambio de entropía de un sistema cerrado sea cero durante un proceso irreversible? Explique. Get solution

7-20C ¿Cuáles son los tres mecanismos diferentes que pueden hacer que cambie la entropía de un volumen de control? Get solution

7-21E Una máquina térmica completamente reversible opera con una fuente a 1 500 R y un sumidero térmico a 500 R. Si la entropía del sumidero aumenta en 10 Btu/R, ¿cuánto disminuirá la entropía de la fuente? ¿Cuánto calor, en Btu, se transfiere de esta fuente? Get solution

7-22 Una fuente de energía de 1 000 K transfiere calor a una máquina térmica completamente reversible. Esta máquina transfiere calor a un sumidero a 300 K. ¿Cuánto calor se debe transferir de la fuente de energía para aumentar la entropía del sumidero de energía en 20 kJ/K? Get solution

7-23E Una máquina térmica acepta 200 000 Btu de calor de una fuente a 1 500 R, y rechaza 100 000 Btu de calor a un sumidero térmico a 600 R. Calcule el cambio de entropía de todos los componentes de esta máquina y determine si es completamente reversible. ¿Cuánto trabajo total produce? Get solution

7-24 Se comprime aire mediante un compresor de 30 kW, de P1 a P2. La temperatura del aire se mantiene constante a 25 °C durante este proceso, como resultado de la transferencia térmica al entorno a 17 °C. Determine la tasa de cambio de entropía del aire. Indique las suposiciones que se hicieron al resolver este problema. Respuesta: _0.101 kW/K Get solution

7-25 Se transfiere calor, en la cantidad de 100 kJ, directamente de un depósito caliente a 1 200 K a un depósito frío a 600 K. Calcule el cambio de entropía de los dos depósitos y determine si se satisface el principio de incremento de entropía. Get solution

7-26 En el problema anterior, suponga que el calor se transfiere del depósito frío al caliente, en forma contraria a la expresión de Clausius de la segunda ley. Pruebe que esto viola el principio del incremento de entropía, como debe ser de acuerdo con Clausius. Get solution

7-27 Una bomba de calor completamente reversible produce calor a razón de 300 kW para calentar una casa que se mantiene a 24 °C. El aire exterior, que está a 7 °C, sirve como fuente. Calcule la tasa de cambio de entropía de los dos depósitos y determine si esta bomba de calor satisface la segunda ley de acuerdo con el principio de incremento de entropía. Get solution

7-28E Durante el proceso isotérmico de rechazo de calor en un ciclo Carnot, el fluido de trabajo experimenta un cambio de entropía de _0.7 Btu/R. Si la temperatura del sumidero térmico es de 95 °F, determine a) la cantidad de transferencia de calor, b) cambio de entropía del sumidero y c) el cambio total de entropía para este proceso. Get solution

7-29 Entra refrigerante 134a en los serpentines del evaporador de un sistema de refrigeración como un vapor húmedo a una presión de 160 kPa. El refrigerante absorbe 180 kJ de calor del espacio enfriado, que se mantiene a _5 °C, y sale como vapor saturado a la misma presión. Determine a) el cambio de entropía del refrigerante, b) el cambio de entropía del espacio enfriado y c) el cambio de entropía total para este proceso. Get solution

7-30C Un proceso que es internamente reversible y adiabático ¿es necesariamente isentrópico? Explique. Get solution

7-31E 2 lbm de agua a 300 psia llenan un dispositivo de cilindro-émbolo, cuyo volumen es 2.5 pies3. El agua se calienta luego a presión constante hasta que la temperatura llega a 500 °F. Determine el cambio resultante en la entropía total del agua. Respuesta: 0.474 Btu/R Get solution

7-32 Un recipiente rígido bien aislado contiene 5 kg de un vapor húmedo de agua a 150 kPa. Inicialmente, tres cuartas partes de la masa se encuentra en la fase líquida. Un calentador de resistencia eléctrica colocado en el recipiente se enciende ahora y se mantiene encendido hasta que todo el líquido del recipiente se vaporiza. Determine el cambio de entropía del vapor durante este proceso. Get solution

7-33 Un recipiente rígido está dividido en dos partes iguales por una pared. Una parte del recipiente contiene 2.5 kg de agua líquida comprimida a 400 kPa y 60 °C, mientras la otra parte se vacía. La pared se quita ahora y el agua se expande para llenar todo el tanque. Determinar el cambio de entropía del agua durante este proceso, si la presión final en el recipiente es 40 kPa. Get solution

7-34 Reconsidere el problema 7-33 usando software EES (u otro), evalúe y grafique la entropía generada como función de la temperatura del entorno y determine los valores de las temperaturas del entorno que son válidas para este problema. Suponga que las temperaturas del entorno varían de 0 a 100 °C. Explique sus resultados. Get solution

7-35E Un dispositivo de cilindro-émbolo contiene 2 lbm de refrigerante 134a a 120 psia y 100 °F. El refrigerante se enfría ahora a presión constante hasta que existe como líquido a 50 °F. Determine el cambio de entropía del refrigerante durante este proceso. Get solution

7-36 Un dispositivo aislado de cilindro-émbolo contiene 5 L de agua líquida saturada a una presión constante de 150 kPa. Un calentador de resistencia eléctrica dentro del cilindro se enciende ahora y se transfiere una energía de 2 200 kJ al agua. Determine el cambio de entropía del agua durante este proceso. Respuesta: 5.72 kJ/K Get solution

7-37 Calcule el cambio en la entropía específica del agua cuando se enfría a presión constante de 300 kPa desde vapor saturado hasta líquido saturado, usando una ecuación de Gibbs (Tds _ dh – vdp). Use las tablas de vapor para verificar sus resultados. Get solution

7-38E Vapor saturado de R-134a entra a un compresor a 0 °F. A la salida del compresor, la entropía específica es la misma que la de la entrada, y la presión es 60 psia. Determine la temperatura de salida del R-134a y su cambio en la entalpía. Get solution

7-39 Entra vapor de agua a una turbina a 6 MPa y 400 °C, y sale de la turbina a 100 kPa con la misma entropía específica que la de entrada. Calcule la diferencia entre la entalpía específica del agua a la entrada y a la salida de la turbina. Get solution

7-40 1 kg de R-134a inicialmente a 600 kPa y 25 °C sufre un proceso durante el cual se mantiene constante la entropía, hasta que la presión cae a 100 kPa. Determine la temperatura final del R-134a y la energía interna específica. Get solution

7-41 Se expande isentrópicamente refrigerante R-134a desde 800 kPa y 60 °C a la entrada de una turbina de flujo uniforme hasta 100 kPa a la salida. El área de salida es 1 m2 y el área de entrada es 0.5 m2. Calcule las velocidades de entrada y salida cuando el flujo másico es 0.5 kg/s. Respuestas: 0.030 m/s, 0.105 m/s Get solution

7-42 Un dispositivo de cilindro-émbolo fuertemente aislado contiene 0.02 m3 de vapor a 300 kPa y 200 °C. Ahora se comprime el vapor de manera reversible a una presión de 1.2 MPa. Determine el trabajo realizado sobre el vapor durante este proceso. Get solution

7-43 Reconsidere el problema 7-42. Usando software EES (u otro), evalúe y grafique el trabajo realizado sobre el vapor como función de la presión final al variar la presión de 300 kPa a 1.2 MPa. Get solution

7-44 Un dispositivo de cilindro-émbolo contiene 1.2 kg de vapor saturado de agua a 200 °C. Ahora se transfiere calor al vapor y éste se expande reversible e isotérmicamente a una presión final de 800 kPa. Determine la transferencia de calor y el trabajo realizado durante este proceso. Get solution

7-45 Reconsidere el problema 7-44. Usando software EES (u otro), evalúe y grafique la transferencia de calor al vapor de agua y el trabajo realizado como función de la presión final al variar la presión del valor inicial al final de 800 kPa. Get solution

7-46 Refrigerante 134a a 240 kPa y 20 °C sufre un proceso isotérmico en un sistema cerrado hasta que su calidad es 20 por ciento. Determine, por unidad de masa, cuánto trabajo y transferencia de calor se necesitan. Get solution

7-47 Determine la transferencia de calor, en kJ/kg, para el proceso reversible 1-3 que se muestra en la figura P7-47. Get solution

7-48E Determine la transferencia total de calor en Btu/lbm, para el proceso reversible 1-3 que se muestra en la figura P7-48E. Get solution

7-49 Calcule la transferencia térmica, en kJ/kg, para el proceso reversible de flujo uniforme 1-3 que se muestra en la figura P7-49. Get solution

7-50 Se expande vapor en una turbina isentrópica con una sola salida y una sola entrada. En la entrada, el vapor está a 2 MPa y 360 °C. La presión del vapor a la salida es de 100 kPa. Calcule el trabajo que produce esta turbina, en kJ/kg. Get solution

7-51 Una turbina de vapor isentrópica procesa 5 kg/s de vapor de agua a 4 MPa, la mayor parte del cual sale de la turbina a 50 kPa y 100 °C. A 700 kPa, 5 por ciento de flujo de la turbina se desvía para calentar el agua de alimentación. Determine la potencia que produce esta turbina, en kW. Get solution

7-52 Agua a 70 kPa y 100 °C se comprime isentrópicamente en un sistema cerrado a 4 MPa. Determine la temperatura final del agua y el trabajo necesario, en kJ/kg, para esta compresión. Get solution

7-53 Se expanden isentrópicamente 0.5 kg de R-134a, de 600 kPa y 30 °C a 140 kPa. Determine la transferencia total de calor y la producción de trabajo para esta expansión. Get solution

7-54 Entra refrigerante R-134a a una turbina de flujo uniforme, adiabática, como vapor saturado a 1 200 kPa, y se expande a 100 kPa. La potencia producida por la turbina se determina como 100 kW cuando el proceso también es reversible. a) Trace el diagrama T-s con respecto a las líneas de saturación para este proceso. b) Determine el flujo volumétrico del refrigerante R-134a a la salida de la turbina, en m3/s. Respuesta: 0.376 m3/s Get solution

7-55 Un dispositivo de émbolo-cilindro contiene 2 kg de vapor de agua saturado a 600 kPa. El agua se expande adiabáticamente hasta que la presión es 100 kPa y se dice que produce 700 kJ de trabajo. a) Determine el cambio de entropía del agua en kJ/kg • K. b) ¿Es realista este proceso? Usando el diagrama T-s para el proceso y los conceptos de la segunda ley, apoye su respuesta. Get solution

7-56 Entra refrigerante R-134a a un compresor adiabático de flujo estacionario como vapor saturado a 320 kPa, y se comprime a 1 200 kPa. La potencia mínima suministrada al compresor es de 100 kW. a) Trace el diagrama T-s respecto a las líneas de saturación para este proceso. b) Determine el flujo volumétrico del R-134a a la entrada del compresor, en m3/s. Get solution

7-57 Entra vapor a una boquilla adiabática de flujo uniforme con una baja velocidad de entrada como vapor saturado a 6 MPa, y se expande a 1.2 MPa. a) Bajo la condición de que la velocidad de salida debe tener el valor máximo posible, trace el diagrama T-s con respecto a las líneas de saturación para este proceso. b) Determine la velocidad máxima de salida del vapor, en m/s. Respuesta: 764 m/s. Get solution

7-58 Una olla de presión de vapor rígida de 20 L está provista de una válvula de alivio de presión ajustada para liberar vapor y mantener la presión interior una vez que ésta llega a 150 kPa. Inicialmente la olla se llena de agua a 175 kPa con una calidad de 10 por ciento. Ahora se agrega calor hasta que la calidad dentro de la olla es 40 por ciento. Determine el cambio mínimo de entropía del depósito de energía térmica que suministra el calor. Get solution

7-59C En el problema anterior, el agua se agita al mismo tiempo que se calienta. Determine el cambio mínimo de entropía de la fuente suministradora de calor si se realiza un trabajo de 100 kJ sobre el agua al calentarse. Get solution

7-60 Un dispositivo de cilindro-émbolo contiene 5 kg de vapor de agua a 100 °C con una calidad de 50 por ciento. Este vapor sufre dos procesos como sigue: 1-2 El calor se transfiere al vapor de manera reversible, mientras la temperatura se mantiene constante, hasta que el vapor exista como vapor saturado. 2-3 El vapor se expande en un proceso adiabático reversible hasta que la presión es de 15 kPa. a) Haga un esquema de este proceso con respecto a las líneas de saturación en un solo diagrama T-s. b) Determine el calor transferido al vapor en el proceso 1-2, en kJ. c) Determine el trabajo que realiza el vapor en el proceso 2-3, en kJ. Get solution

7-61E Un bote metálico rígido bien aislado de 0.8 pies3 contiene inicialmente refrigerante 134a a 140 psia y 50 °F. Ahora hay una rajadura en el bote y el refrigerante comienza a fugarse lentamente. Suponiendo que el refrigerante que queda en el bote ha sufrido un proceso reversible adiabático, determine la masa final del bote cuando la presión cae a 30 psia. Get solution

7-62E Un desescarchador eléctrico de parabrisas se usa para quitar 0.25 pulg de hielo de un parabrisas. Las propiedades del hielo son Tsat _ 32 °F, uif _ hif _ 144 Btu/lbm, y v _ 0.01602 pies3/lbm. Determine la energía eléctrica necesaria por pie cuadrado de área superficial del parabrisas para fundir este hielo y quítelo como agua líquida a 32 °F. ¿Cuál es la temperatura mínima a la que puede operarse el desescarchador? Suponga que no se transfiere calor del desescarchador ni del hielo al entorno. Get solution

7-63C Considere dos bloques sólidos, uno caliente y el otro frío, que se ponen en contacto en un contenedor adiabático. Después de un tiempo, se establece el equilibrio térmico en el contenedor como resultado de la transferencia de calor. La primera ley exige que la cantidad de energía que pierde el sólido caliente sea igual a la cantidad de energía que gana el frío. ¿La segunda ley exige que la disminución de entropía del sólido caliente sea igual al aumento de entropía del frío? Get solution

7-64 Un bloque de cobre de 75 kg inicialmente a 110 °C se echa dentro de un recipiente aislado que contiene 160 L de agua a 15 °C. Determine la temperatura de equilibrio final y el cambio total de entropía para este proceso. Get solution

7-65 Diez gramos de chips de computadora con un calor específico de 0.3 kJ/kg • K están inicialmente a 20 °C. Estos chips se enfrían colocándolos en 5 gramos de R-134 saturado líquido a _40 °C. Suponiendo que la presión permanece constante mientras los chips se están enfriando, determine el cambio de entropía de a) los chips, b) el R-134a y c) todo el sistema. ¿Es posible este proceso? ¿Por qué? Get solution

7-66 Un bloque de hierro de 25 kg, inicialmente a 350 °C, se enfría en un recipiente aislado que contiene 100 kg de agua a 18 °C. Suponiendo que el agua que se vaporiza durante el proceso se recondensa en el recipiente, determine el cambio total de entropía durante el proceso. Get solution

7-67 Un bloque de aluminio de 30 kg inicialmente a 140 °C se pone en contacto con un bloque de 40 kg de hierro a 60 °C en un contenedor aislado. Determine la temperatura final de equilibrio y el cambio total de entropía para este proceso. Respuestas: 109 °C; 0.251 kJ/K Get solution

7-68 Reconsidere el problema 7-67. Usando el software EES (u otro), estudie el efecto de la masa del bloque de hierro sobre la temperatura final de equilibrio y el cambio total de entropía para este proceso. Haga variar la masa del hierro de 10 a 100 kg. Grafique la temperatura de equilibrio y el cambio total de entropía como función de la masa de hierro, y explique los resultados. Get solution

7-69 Un bloque de hierro de 50 kg y un bloque de cobre de 20 kg, ambos con temperatura inicial de 80 °C, se dejan caer en un gran lago a 15 °C. Se establece el equilibrio térmico después de un tiempo como resultado de la transferencia de calor entre los bloques y el agua del lago. Determine el cambio total de entropía para este proceso. Get solution

7-70 Una bomba adiabática se va a usar para comprimir agua líquida saturada a 10 kPa a una presión de 15 MPa de manera reversible. Determine la entrada de trabajo usando a) datos de entropía de la tabla del líquido comprimido, b) el volumen específico de agua en la entrada a la bomba y los valores de presiones, c) el valor promedio de volumen específico de agua y valores de presiones. También determine los errores de aproximación en los incisos b) y c). Get solution

7-71C Algunas propiedades de los gases ideales tales como la energía interna y la entalpía varían sólo con la temperatura [es decir, u _ u(T) y h _ h(T)]. ¿Es también éste el caso para la entropía? Get solution

7-72C ¿La entropía de un gas ideal puede cambiar durante un proceso isotérmico? Get solution

7-73C Un gas ideal sufre un proceso entre dos temperaturas especificadas dos veces: primera vez, a presión constante; y segunda vez, a volumen constante. ¿Para cuál caso experimentará el gas ideal un mayor cambio de entropía? Explique. Get solution

7-74 Demuestre que las dos relaciones para cambio de entropía de gases ideales bajo la suposición de calores específicos constantes (ecuaciones 7-33 y 7-34) son equivalentes. Get solution

7-75 Comenzando con la segunda relación T ds (ecuación 7-26), obtenga la ecuación 7-34 para el cambio de entropía de gases ideales bajo la suposición de calores específicos constantes. Get solution

7-76 Comenzando con la ecuación 7-34, obtenga la ecuación 7-43. Get solution

7-77 ¿Cuál de dos gases, helio o nitrógeno, experimenta el mayor cambio de entropía al cambiar su estado de 2 000 kPa y 427 °C a 200 kPa y 27 °C? Get solution

7- 78 Se expande aire de 2 000 kPa y 500 °C a 100 kPa y 50 °C. Suponiendo calores específicos constantes, determine el cambio en la entropía específica del aire. Get solution

7-79E ¿Cuál es la diferencia entre las entropías de aire a 15 psia y 70 °F y aire a 40 psia y 250 °F, por unidad de masa? Get solution

7-80 Nitrógeno a 900 kPa y 300 °F se expande adiabáticamente en un sistema cerrado a 100 kPa. Determine la temperatura mínima del nitrógeno después de la expansión. Get solution

7-81E Aire a 15 psia y 70 °F se comprime adiabáticamente en un sistema cerrado a 200 psia. ¿Cuál es la temperatura mínima del aire después de esta compresión? Get solution

7-82 Un dispositivo aislado de cilindro-émbolo contiene inicialmente 300 L de aire a 120 kPa y 17 °C. Ahora se calienta el aire durante 15 min por un calefactor de resistencia de 200 W colocado dentro del cilindro. La presión de aire se mantiene constante durante este proceso. Determine el cambio de entropía del aire, suponiendo a) calores específicos constantes y b) calores específicos variables. Get solution

7-83 Un dispositivo de cilindro-émbolo contiene 0.75 kg de gas nitrógeno a 140 kPa y 37 °C. El gas se comprime ahora lentamente en un proceso politrópico durante el cual PV1.3 _ constante. El proceso termina cuando el volumen se reduce a la mitad. Determine el cambio de entropía del nitrógeno durante este proceso. Respuesta: _0.0385 kJ/K Get solution

7-84 Reconsidere el problema 7-83. Usando software EES (u otro), investigue el efecto de variar el exponente politrópico de 1 a 1.4 en el cambio de entropía del nitrógeno. Muestre el proceso en un diagrama P-v. Get solution

7-85E Una masa de 15 lbm de helio sufre un proceso de un estado inicial de 50 pies3/lbm y 80 °F a un estado final de 10 pies3/lbm y 200 °F. Determine el cambio de entropía del helio durante este proceso, suponiendo que a) el proceso es reversible y b) el proceso es irreversible. Get solution

7-86 Un dispositivo de émbolo-cilindro contiene 1 kg de aire a 200 kPa y 127 °C. Ahora se deja que el aire se expanda en un proceso reversible, isotérmico, hasta que su presión es de 100 kPa. Determine la cantidad del calor transferido al aire durante esta expansión. Get solution

7-87 Se expande argón en una turbina isentrópica de 2 MPa y 500 °C a 200 kPa. Determine la temperatura de salida y el trabajo producido por esta turbina por unidad de masa del argón. Get solution

7-88E Se comprime aire en un compresor isentrópico, de 15 psia y 70 °F a 200 psia. Determine la temperatura de salida y el trabajo consumido por este compresor por unidad de masa del aire. Get solution

7-89 Un recipiente aislado rígido está dividido en dos partes iguales por una mampara. Inicialmente, una parte contiene 5 kmol de un gas ideal a 250 kPa y 40 °C, y el otro lado está al vacío. Ahora se quita la mampara y el gas llena todo el tanque. Determine el cambio total de entropía durante este proceso. Respuesta: 28.81 kJ/K Get solution

7-90 Se comprime aire en un dispositivo de cilindro-émbolo, de 90 kPa y 22 °C a 900 kPa, en un proceso reversible adiabático. Determine la temperatura final y el trabajo realizado durante este proceso, suponiendo para el aire a) calores específicos constantes y b) calores específicos variables. Respuestas: a) 565 K; b) 197 kJ/kg Get solution

7-91 Reconsidere el problema 7-90 usando software EES (u otro), evalúe y grafique el trabajo realizado y la temperatura final en el proceso de compresión como funciones de la presión final, para ambos incisos, al variar la presión final de 100 a 1 200 kPa. Get solution

7-92 Un recipiente rígido aislado contiene 4 kg de gas argón a 450 kPa y 30 °C. Se abre ahora una válvula y se permite escapar argón hasta que la presión interna cae a 200 kPa. Suponiendo que el argón que queda dentro del recipiente ha sufrido un proceso reversible adiabático, determine la masa final en el recipiente. Get solution

7-93 Reconsidere el problema 7-92. Usando software EES (u otro), investigue el efecto de la presión final en la masa final en el tanque al variar la presión de 450 a 150 kPa, y grafique los resultados. Get solution

7-94E Entra aire a una tobera adiabática a 60 psia, 540 °F y 200 pies/s, y sale a 12 psia. Suponiendo que el aire es un gas ideal con calores específicos variables e ignorando cualquier irreversibilidad, determine la velocidad de salida del aire. Get solution

7-95 Se expande aire en una tobera adiabática durante un proceso politrópico con n = 1.3. Entra a la tobera a 700 kPa y 100 °C con una velocidad de 30 m/s, y sale a una presión de 200 kPa. Calcule la temperatura del aire y la velocidad a la salida de la tobera. Get solution

7-96 Repita el problema 7-95 para el exponente politrópico n _ 1.1. Get solution

7-97 Un dispositivo de émbolo-cilindro contiene aire a 427 °C y 600 kPa. El aire se expande adiabáticamente hasta que la presión es de 100 kPa. Determine la masa de aire necesaria para producir un trabajo máximo de 1 000 kJ. Suponga que el aire tiene calores específicos constantes evaluados a 300 K. Respuesta: 4.97 kg Get solution

7-98 Entra helio a un compresor adiabático de flujo uniforme a 0.6 kg/s, 100 kPa y 27 °C, con una baja velocidad de entrada, y se comprime a 600 kPa. a) Determine la temperatura de salida para que el suministro de trabajo y la energía cinética a la salida del compresor tengan los valores mínimos. b) Si la razón de suministro de trabajo al compresor se mide como un mínimo con un valor de 1 000 kW, determine la velocidad de salida del compresor, en m/s. Get solution

7-99 Un dispositivo de cilindro-émbolo contiene 5 kg de aire a 427 °C y 600 kPa. El aire se expande adiabáticamente hasta que la presión es de 100 kPa, y produce 600 kJ de trabajo. Suponga que el aire tiene calores específicos constantes evaluados a 300 K. a) Determine el cambio de entropía del aire, en kJ/kg • K. b) Como el proceso es adiabático, ¿es realista? Usando conceptos de la segunda ley, apoye su respuesta. Get solution

7-100 Un recipiente de volumen constante contiene 5 kg de aire a 100 kPa y 327 °C. El aire se enfría a la temperatura circundante de 27 °C. Suponga calores específicos constantes a 300 K. a) Determine el cambio de entropía del aire en el recipiente durante el proceso, en kJ/K; b) determine el cambio neto de entropía del universo debido a este proceso, en kJ/K, y (c) dibuje un esquema de los procesos para el aire en el recipiente y el entorno, en un solo diagrama T-s. Asegúrese de etiquetar los estados iniciales y finales para ambos procesos. Get solution

7-101 Un contenedor lleno con 45 kg de agua líquida a 95 °C se coloca en un cuarto de 90 m3 que inicialmente está a 12 °C. Después de un tiempo se establece el equilibrio térmico como resultado de la transferencia de calor entre el agua y el aire del cuarto. Usando calores específicos constantes, determine a) la temperatura de equilibrio final, b) la cantidad de transferencia de calor entre el agua y el aire del cuarto, y c) la generación de entropía. Suponga que el cuarto está bien sellado y fuertemente aislado. Get solution

7-102 Un gas ideal a 100 kPa y 15 °C entra a un compresor de flujo estacionario. El gas se comprime a 600 kPa, y 10 por ciento de la masa que entró al compresor se toma para otro uso. El restante 90 por ciento del gas de entrada se comprime a 800 kPa antes de salir del compresor. El proceso total de compresión se supone que es reversible y adiabático. Se mide la potencia suministrada al compresor, 32 kW. Si el gas ideal tiene calores específicos constantes tales que cv = 0.8 kJ/kg . K y cp=_ 1.1 kJ/kg . K, a) haga un esquema del proceso de compresión en un diagrama T-s, b) determine la temperatura del gas en las dos salidas del compresor, en K, y c) determine el flujo másico del gas en el compresor, en kg/s. Get solution

7-103E El contenedor bien aislado que se muestra en la figura P7-103E se evacua inicialmente. La línea de suministro contiene aire que se mantiene a 200 psia y 100 °F. La válvula se abre hasta que la presión en el contenedor es la misma que la presión en la línea de suministro. Determine la temperatura mínima en el contenedor cuando se cierra la válvula. Get solution

7-104C En compresores grandes, a menudo se enfría el gas mientras se comprime, para reducir el consumo de potencia del compresor. Explique cómo este enfriamiento reduce el consumo de potencia. Get solution

7-105C Las turbinas de vapor de las plantas termoeléctricas operan esencialmente bajo condiciones adiabáticas. Una ingeniera de planta sugiere acabar con esta práctica. Ella propone hacer pasar agua de enfriamiento por la superficie exterior de la carcasa para enfriar el vapor que fluye por la turbina. De esta manera, razona, la entropía del vapor disminuirá, el desempeño de la turbina mejorará y, como consecuencia, la producción de trabajo de la turbina aumentará. ¿Cómo evaluaría usted esta propuesta? Get solution

7-106C Es bien sabido que la potencia que consume un compresor se puede reducir enfriando el gas durante la compresión. Inspirándose en esto, alguien propone enfriar el líquido que fluye por una bomba para reducir el consumo de potencia de la bomba. ¿Apoyaría usted esta propuesta? Explique. Get solution

7-107E Se comprime isotérmicamente aire de 13 psia y 90 °F a 80 psia en un dispositivo reversible de flujo estacionario. Calcule el trabajo necesario, en Btu/lbm, para esta compresión. Respuesta: 68.5 Btu/lbm Get solution

7-108 Vapor de agua saturado a 150 °C se comprime en un dispositivo reversible de flujo estacionario a 1 000 kPa mientras se mantiene constante su volumen específico. Determine el trabajo necesario, en kJ/kg. Get solution

7-109E Calcule el trabajo producido, en Btu/lbm, para el proceso reversible de flujo uniforme 1-3 que se muestra en la figura P7-109E. Get solution

7-110 Calcule el trabajo producido, en kJ/kg, para el proceso reversible isotérmico de flujo estacionario 1-3 que se muestra en la figura P7-110, cuando el fluido de trabajo es un gas ideal. Get solution

7-111 Entra agua líquida a una bomba de 25 kW a una presión de 100 kPa, a razón de 5 kg/s. Determine la presión máxima que puede tener el agua líquida a la salida de la bomba. Desprecie los cambios de energía cinética y potencial del agua, y tome el volumen específico del agua como 0.001 m3/kg. Get solution

7-112 Considere una planta termoeléctrica que opera entre los límites de presión de 5 MPa y 10 kPa. El vapor de agua entra a la bomba como líquido saturado y sale de la turbina como vapor saturado. Determine la relación del trabajo producido por la turbina al trabajo consumido por la bomba. Suponga que el ciclo completo es reversible y las pérdidas de calor de la bomba y la turbina son despreciables. Get solution

7-113 Reconsidere el problema 7-112. Usando el software EES (u otro), investigue el efecto de la calidad del vapor a la salida de la turbina sobre la producción neta de trabajo. Haga variar la calidad de 0.5 a 1.0, y grafique la producción neta de trabajo como función de dicha calidad. Get solution

7-114 Entra agua líquida a 120 kPa a una bomba de 7 kW que eleva su presión a 5 MPa. Si la diferencia de elevación entre los niveles de entrada y salida es 10 m, determine el flujo másico más alto de agua líquida que puede manejar esta bomba. Desprecie el cambio de energía cinética del agua y tome el volumen específico como 0.001 m3/kg. Get solution

7-115E Se comprime gas helio de 16 psia y 85 °F a 120 psia a razón de 10 pies3/s. Determine la entrada de potencia al compresor, suponiendo que el proceso de compresión es a) isentrópico, b) politrópico, con n _ 1.2, c) isotérmico y d) ideal, politrópico de dos etapas con n _ 1.2. Get solution

7-116E Reconsidere el problema 7-115E. Usando software EES (u otro), evalúe y grafique el trabajo de compresión y el cambio de entropía del helio como funciones del exponente politrópico cuando varía de 1 a 1.667. Explique sus resultados. Get solution

7-117 Las etapas de compresión en el compresor axial de la turbina industrial de gas son de acople cercano, lo cual hace muy impráctico el interenfriamiento. Para enfriar el aire en estos compresores y para reducir la potencia de compresión, se propone rociar agua pulverizada con tamaños de gota del orden de 5 micras en el flujo de aire mientras se comprime, y enfriar continuamente el aire al evaporarse el agua. Aunque la colisión de las gotas de agua con los álabes giratorios es un motivo de preocupación, la experiencia con turbinas de vapor indica que pueden resistir concentraciones de gotas de agua hasta de 14 por ciento. Suponiendo que el aire se comprime isentrópicamente a razón de 2 kg/s de 300 K y 100 kPa a 1 200 kPa y el agua se inyecta a una temperatura de 20 °C a razón de 0.2 kg/s, determine la reducción en la temperatura de salida del aire comprimido, y el ahorro en potencia del compresor. Suponga que el agua se vaporiza por completo antes de salir del compresor, y suponga un flujo másico promedio de 2.1 kg/s en el compresor. Get solution

7-118 Reconsidere el problema 7-117. El compresor con agua inyectada se usa en una planta eléctrica de turbina de gas. Se asegura que la producción de potencia de una turbina de gas aumentará por el incremento en el flujo másico del gas (aire más vapor de agua). ¿Está usted de acuerdo? Eficiencias isentrópicas de dispositivos de flujo estacionario Get solution

7-119C Describa el proceso ideal para a) una turbina adiabática, b) un compresor adiabático y c) una tobera adiabática, y defina la eficiencia isentrópica para cada dispositivo. Get solution

7-120C ¿El proceso isentrópico es un modelo adecuado para compresores que se enfrían intencionalmente? Explique. Get solution

7-121C En un diagrama T-s, ¿el estado real de salida (estado 2) de una turbina adiabática tiene que estar del lado derecho del estado isentrópico de salida (estado 2s)? ¿Por qué? Get solution

7-122E Vapor a 100 psia y 650 °F se expande adiabáticamente en un sistema cerrado, a 10 psia. Determine el trabajo producido, en Btu/lbm, y la temperatura final del vapor para una eficiencia de expansión isentrópica de 80 por ciento. Respuestas: 132 Btu/lbm, 275 °F Get solution

7-123 Vapor de agua a 3 MPa y 400 °C se expande a 30 kPa en una turbina adiabática con eficiencia isentrópica de 92 por ciento. Determine la potencia producida por esta turbina, en kW, cuando el flujo másico es 2 kg/s. Get solution

7-124 Repita el problema 7-123 para una eficiencia de turbina de 85 por ciento. Get solution

7-125 Entra vapor de agua a una turbina adiabática a 7 MPa, 600 °C y 80 m/s, y sale a 50 kPa, 150 °C y 140 m/s. Si la producción de potencia de la turbina es de 6 MW, determine a) el flujo másico de vapor que fluye por la turbina y b) la eficiencia isentrópica de la turbina. Respuestas: a) 6.95 kg/s; b) 73.4 por ciento Get solution

7-126E Entran gases de combustión a una turbina adiabática de gas a 1 540 °F y 120 psia, y salen a 60 psia con baja velocidad. Tratando como aire los gases de combustión y suponiendo una eficiencia isentrópica de 82 por ciento, determine la producción de trabajo de la turbina. Respuesta: 71.7 Btu/lbm Get solution

7-127 Se comprime aire de 100 kPa y 20 °C a 700 kPa, uniforme y adiabáticamente, a razón de 2 kg/s. Determine la potencia requerida para comprimir este aire si la eficiencia de compresión isentrópica es 95 por ciento. Get solution

7-128 Vapor a 4 MPa y 350 °C se expande en una turbina adiabática a 120 kPa. ¿Cuál es la eficiencia isentrópica de esta turbina si el vapor sale como vapor saturado? Get solution

7-129 Se expande aire de 2 MPa y 327 °C a 100 kPa, en una turbina adiabática. Determine la eficiencia isentrópica de esta turbina si el aire escapa a 0 °C. Get solution

7-130 Una unidad de refrigeración comprime vapor saturado de R-134a a 20 °C hasta 1 000 kPa. ¿Cuánta potencia se necesita para comprimir 0.5 kg/s de R-134a con una eficiencia de compresor de 85 por ciento? Respuesta: 6.78 kW Get solution

7-131 Entra refrigerante-134a a un compresor adiabático como vapor saturado a 100 kPa, a razón de 0.7 m3/min, y sale a una presión de 1 MPa. Si la eficiencia isentrópica del compresor es de 87 por ciento, determine a) la temperatura del refrigerante a la salida del compresor y b) la entrada de potencia, en kW. También muestre el proceso en un diagrama T-s con respecto a las líneas de saturación. Get solution

7-132 Reconsidere el problema 7-131. Usando software EES (u otro), rehaga el problema incluyendo los efectos de la energía cinética del flujo suponiendo una relación de áreas entrada-salida de 1.5 para el compresor, cuando el diámetro interior del tubo de salida del compresor mide 2 cm. Get solution

7-133 Entra aire a un compresor adiabático a 100 kPa y 17 °C a razón de 2.4 m3/s, y sale a 257 °C. El compresor tiene una eficiencia isentrópica de 84 por ciento. Despreciando los cambios en energías cinética y potencial, determine a) la presión de salida del aire y b) la potencia necesaria para accionar el compresor. Get solution

7-134 Se comprime aire en un compresor adiabático, de 95 kPa y 27 °C a 600 kPa y 277 °C. Suponiendo calores específicos variables y despreciando los cambios en energías cinética y potencial, determine a) la eficiencia isentrópica del compresor y b) la temperatura de salida del aire si el proceso fuese reversible. Respuestas: a) 81.9 por ciento; b) 505.5 K Get solution

7-135E Entra gas argón a un compresor adiabático a 20 psia y 90 °F, con una velocidad de 60 pies/s, y sale a 200 psia y 240 pies/s. Si la eficiencia isentrópica del compresor es de 80 por ciento, determine a) la temperatura de salida del argón y b) la entrada de trabajo al compresor. Get solution

7-136E Entra aire a una tobera adiabática a 45 psia y 940 °F con baja velocidad y sale a 650 pies/s. Si la eficiencia isentrópica de la tobera es de 85 por ciento, determine la temperatura y la presión de salida del aire. Get solution

7-137E Reconsidere el problema 7-136E. Usando software EES (u otro), estudie el efecto de la variación en eficiencia isentrópica de la tobera de 0.8 a 1.0 tanto en la temperatura como en la presión de salida del aire, y grafique los resultados. Get solution

7-138 La tobera de escape de un motor de propulsión expande adiabáticamente aire de 300 kPa y 180 °C a 100 kPa. Determine la velocidad del aire a la salida cuando la velocidad de entrada es baja y la eficiencia isentrópica de la tobera es de 96 por ciento. Get solution

7-139E Un difusor adiabático a la entrada de un motor de propulsión aumenta la presión del aire, que entra al difusor a 13 psia y 30 °F, a 20 psia. ¿Cuál será la velocidad de aire a la salida del difusor si la eficiencia isentrópica del difusor es de 82 por ciento y la velocidad de entrada es de 1 000 pies/s? Get solution

7-140E Refrigerante R-134a se expande adiabáticamente desde 100 psia y 100 °F hasta vapor saturado a 10 psia. Determine la generación de entropía para este proceso, en Btu/lbm • R. Get solution

7-141 Entra oxígeno a un tubo aislado de 12 cm de diámetro con una velocidad de 70 m/s. A la entrada del tubo, el oxígeno tiene 240 kPa y 20 °C, y a la salida tiene 200 kPa y 18 °C. Calcule la tasa de generación de entropía en el tubo. Get solution

7-142 Se comprime nitrógeno en un compresor adiabático, de 100 kPa y 25 °C a 800 kPa y 307 °C. Calcule la generación de entropía para este proceso en kJ/kg • K. Get solution

7-143 Considere una familia de cuatro, cada uno de los cuales toma una ducha de 5 minutos cada mañana. El flujo promedio de la ducha es de 12 L/min. El agua municipal a 15 °C se calienta a 55 °C en un calentador eléctrico de agua y se templa a 42 °C con agua fría en un codo T antes de salir por la ducha. Determine la cantidad de entropía que genera esta familia por año como resultado de sus duchas diarias. Get solution

7-144 Agua fría (cp _ 4.18 kJ/kg • °C) que va a una ducha entra a un intercambiador de calor bien aislado, de paredes delgadas, de doble tubo, a contracorriente, a 10 °C, a razón de 0.95 kg/s, y se calienta a 70 °C por agua caliente (cp _ 4.19 kJ/kg • °C) que entra a 85 °C a razón de 1.6 kg/s. Determine a) la tasa de transferencia de calor y b) la tasa de generación de entropía en el intercambiador de calor. Get solution

7-145 Se precalienta aire (cp _ 1.005 kJ/kg • °C) mediante gases de escape calientes, en un intercambiador de calor de flujo cruzado, antes de que entre al horno. El aire entra al intercambiador de calor a 95 kPa y 20 °C, a razón de 1.6 m3/s. Los gases de combustión (cp _ 1.10 kJ/kg • °C) entran a 180 °C a razón de 2.2 kg/s y salen a 95 °C. Determine a) la tasa de transferencia de calor al aire, b) la temperatura de salida del aire y c) la tasa de generación de entropía. Get solution

7-146 Un intercambiador de calor bien aislado, de coraza y tubos, se usa para calentar agua (cp _ 4.18 kJ/kg • °C) en los tubos, de 20 a 70 °C, a razón de 4.5 kg/s. El calor lo suministra un aceite caliente (cp _ 2.30 kJ/kg • °C) que entra a la coraza a 170 °C a razón de 10 kg/s. Despreciando cualquier pérdida de calor del intercambiador, determine a) la temperatura de salida del aceite y b) la tasa de generación de entropía en el intercambiador de calor. Get solution

7-147 Refrigerante R-134a se estrangula de 1 200 kPa y 40 °C a 200 kPa. Se pierde calor del refrigerante en la cantidad de 0.5 kJ/kg al entorno a 25 °C. Determine a) la temperatura de salida del refrigerante y b) la generación de entropía durante este proceso. Get solution

7-148 En una planta de producción de hielo, se congela agua a 0 °C y presión atmosférica evaporando R-134a líquido saturado a _16 °C. El refrigerante sale de este evaporador como vapor saturado, y la planta está diseñada para producir hielo a 0 °C a razón de 2 500 kg/h. Determine la tasa de generación de entropía en esta planta. Get solution

7-149E Agua a 20 psia y 50 °F entra a una cámara de mezclado a razón de 300 lbm/min. En la cámara se mezcla uniformemente con vapor que entra a 20 psia y 240 °F. La mezcla sale de la cámara a 20 psia y 130 °F, y se pierde calor al aire circundante a 70 °F, a razón de 180 Btu/min. Despreciando los cambios en energías cinética y potencial, determine la tasa de generación de entropía durante este proceso. Get solution

7-150E Se va a condensar vapor por el lado de coraza de un intercambiador de calor a 120 °F. Entra agua de enfriamiento a los tubos a 60 °F a razón de 92 lbm/s, y sale a 73 °F. Suponiendo que el intercambiador de calor está bien aislado, determine a) la razón de transferencia térmica en el intercambiador de calor, y b) la razón de generación de entropía en el intercambiador de calor. Get solution

7-151 En una planta de productos lácteos, se pasteuriza leche que entra a 4 °C, a 72 °C, con un gasto de 12 L/s, durante 24 horas al día y 365 días por año. La leche se calienta a la temperatura de pasteurización mediante agua calentada en una caldera con quemador de gas natural que tiene una eficiencia de 82 por ciento. La leche pasteurizada se enfría luego mediante agua fría a 18 °C antes de refrigerarla finalmente a 4 °C. Para ahorrar energía y dinero, la planta instala un regenerador que tiene una eficiencia de 82 por ciento. Si el costo del gas natural es de $1.04/termia (1 termia = 105 500 kJ), determine cuánta energía y cuánto dinero ahorrará el regenerador a esta empresa por año, y la reducción anual en generación de entropía. Get solution

7-152 Bolas de acero inoxidable de rodamiento (r _ 8 085 kg/m3 y cp _ 0.480 kJ/kg • °C) que tienen un diámetro de 1.8 cm, se van a templar en agua a razón de 1 100 por minuto. Las bolas salen del horno a una temperatura uniforme de 900 °C y se exponen al aire a 20 °C durante un tiempo antes de echarlas en el agua. Si la temperatura de las bolas cae a 850 °C antes del templado, determine a) la tasa de transferencia de calor de las bolas al aire y b) la tasa de generación de entropía debida a pérdida de calor de las bolas al aire. Get solution

7-153 Un huevo ordinario se puede aproximar a una esfera de 5.5 cm de diámetro. El huevo está inicialmente a una temperatura uniforme de 8 °C, y se pone en agua hirviendo a 97 °C. Tomando las propiedades del huevo como r = 1 020 kg/m3 y cp = 3.32 kJ/kg • °C, determine a) cuánto calor se transmite al huevo en el tiempo en que la temperatura promedio del huevo sube a 70 °C y b) la cantidad de generación de entropía asociada con este proceso de transferencia térmica. Get solution

7-154 Largas varillas cilíndricas de acero (r _ 7 833 kg/m3 y cp _ 0.465 kJ/kg • °C), de 10 cm de diámetro, se someten a un tratamiento térmico haciéndolas pasar a una velocidad de 3 m/min por un horno de 7 m de longitud que se mantiene a 900 °C. Si las varillas entran al horno a 30 °C, y salen a 700 °C, determine a) la tasa de transferencia de calor a las varillas en el horno y b) la tasa de generación de entropía asociada con este proceso de transferencia térmica. Get solution

7-155 Las superficies interna y externa de una pared de ladrillo de 3 m 8 m con espesor de 20 cm se mantienen a temperaturas de 20 °C y 2 °C, respectivamente. Si la tasa de transferencia térmica a través de la pared es de 1 560 W, determine la tasa de generación de entropía dentro de la pared. Get solution

7-156 Para propósitos de transferencia térmica, un hombre de pie se puede modelar como un cilindro vertical de 30 cm de diámetro, 170 cm de longitud, con las superficies superior e inferior aisladas, y con la superficie lateral a una temperatura promedio de 34 °C. Si la tasa de pérdida de calor de este hombre al entorno a 20 °C es 336 W, determine la tasa de transferencia de entropía del cuerpo de esta persona que acompaña la transferencia de calor, en W/K. Get solution

7-157 Una plancha de 1 000 W se deja sobre la mesa de planchar con su base expuesta al aire a 20 °C. Si la temperatura de la superficie es de 400 °C, determine la tasa de generación de entropía durante este proceso en operación estacionaria. ¿Cuánta de esta generación de entropía ocurre dentro de la plancha? Get solution

7-158E Un dispositivo de cilindro-émbolo sin fricción contiene agua líquida saturada a una presión de 40 psia. Ahora se transfieren 400 Btu de calor al agua desde una fuente a 1 000 °F, y parte del líquido se vaporiza a presión constante. Determine la entropía total generada durante este proceso, en Btu/R. Get solution

7-159E Entra vapor de agua a un difusor a 20 psia y 240 °F con una velocidad de 900 pies/s, y sale como vapor saturado a 240 °F y 100 pies/s. El área de salida del difusor es de 1 pie2. Determine a) el flujo másico del vapor de agua y b) la tasa de generación de entropía durante este proceso. Suponga una temperatura ambiente de 77 °F. Get solution

7-160 Entra vapor a una tobera adiabática a 2.5 MPa y 450 °C, con una velocidad de 55 m/s, y sale a 1 MPa y 390 m/s. Si la tobera tiene un área de entrada de 6 cm2, determine a) la temperatura de salida y b) la tasa de generación de entropía para este proceso. Respuestas: a) 406 °C; b) 0.0783 kW/K Get solution

7-161 Se expande vapor de agua de una manera estacionaria en una turbina a razón de 40 000 kg/h, entrando a 8 MPa y 500 °C y saliendo a 40 kPa como vapor saturado. Si la potencia generada por la turbina es de 8.2 MW, determine la tasa de generación de entropía para este proceso. Suponga que el medio ambiente está a 25 °C. Get solution

7-162E Entra aire a un compresor a condiciones ambientes de 15 psia y 60 °F, con una baja velocidad, y sale a 150 psia, 620 °F y 350 pies/s. El compresor se enfría por el aire ambiente a 60 °F, a razón de 1 500 Btu/min. La entrada de potencia al compresor es 400 hp. Determine a) el flujo másico del aire y b) la tasa de generación de entropía. Get solution

7-163 Un flujo de agua caliente a 70 °C entra a una cámara mezcladora adiabática a una razón de 3.6 kg/s, donde se mezcla con un flujo de agua fría a 20 °C. Si la mezcla sale de la cámara a 42 °C, determine a) el flujo másico del agua fría y b) la tasa de generación de entropía en este proceso de mezclado adiabático. Suponga que todos los flujos están a 200 kPa. Get solution

7-164 Agua líquida a 200 kPa y 20 °C se calienta en una cámara al mezclarla con vapor sobrecalentado a 200 kPa y 150 °C. El agua líquida entra a la cámara mezcladora a razón de 2.5 kg/s, y se estima que la cámara pierde calor al aire circundante a 25 °C a razón de 1 200 kJ/min. Si la mezcla sale de la cámara mezcladora a 200 kPa y 60 °C, determine a) el flujo másico del vapor sobrecalentado y b) la tasa de generación de entropía durante este proceso de mezclamiento. Get solution

7-165 Un recipiente rígido de 0.18 m3 se llena con agua líquida saturada a 120 °C. Ahora se abre una válvula en el fondo del recipiente y lentamente se saca la mitad de la masa total del recipiente en fase líquida. Se transfiere calor al agua de una fuente a 230 °C, de modo que la temperatura en el recipiente permanece constante. Determine a) la cantidad de transferencia de calor y b) la generación total de entropía para este proceso. Get solution

7-166E Un bloque de hierro de masa desconocida a 185 °F se echa en un recipiente aislado que contiene 0.8 pie3 de agua a 70 °F. Al mismo tiempo, una rueda de paletas accionada por un motor de 200 W se activa para agitar el agua. Se establece el equilibrio térmico después de 10 min, con una temperatura final de 75 °F. Determine a) la masa del bloque de hierro y b) la entropía generada durante este proceso. Get solution

7-167 Un recipiente rígido contiene 7.5 kg de mezcla saturada de agua a 400 kPa. Ahora se abre una válvula en el fondo del recipiente y se saca líquido. Se transfiere calor al vapor de manera que la presión dentro del recipiente permanece constante. Se cierra la válvula cuando ya no queda líquido en el recipiente. Si se estima que se ha transferido al recipiente un total de 5 kJ de calor, determine a) la calidad del vapor en el recipiente en el estado inicial, b) la cantidad de masa que ha escapado y c) la generación de entropía durante este proceso si el calor se suministra al recipiente desde una fuente que está a 500 °C. Get solution

7-168 El aire comprimido es uno de los servicios clave en las plantas de fabricación, y la potencia total de los sistemas de compresión de aire instalados en Estados Unidos se estima en alrededor de 20 millones de hp. Suponiendo que los com- presores operen a plena carga durante un tercio del tiempo en promedio, y que la eficiencia promedio del motor es 85 por ciento, determine cuánta energía y cuánto dinero se ahorrarán por año si la energía que consumen los compresores se reduce en 5 por ciento como resultado de la implementación de algunas medidas de conservación. Tome el costo unitario de electricidad como $0.07/kWh. Get solution

7-169 Las necesidades de aire comprimido de una planta a nivel del mar se satisfacen mediante un compresor de 90 hp que toma aire a la presión atmosférica local de 101.3 kPa y a la temperatura promedio de 15 °C, y lo comprime a 1 100 kPa. Una investigación de los sistemas de aire comprimido y el equipo que usa aire comprimido revela que comprimir el aire a 750 kPa es suficiente para esta planta. El compresor opera 3 500 h/año a 75 por ciento de la carga nominal, y está accionado por un motor eléctrico que tiene una eficiencia de 94 por ciento. Tomando el precio de electricidad como $0.085/kWh, determine las cantidades de energía y de dinero que se ahorran como resultado de reducir la presión del aire comprimido. Get solution

7-170 Un compresor de 150 hp en una planta industrial está alojado en el área de producción donde la temperatura promedio durante las horas de operación es de 25 °C. La temperatura promedio del exterior durante las mismas horas es de 10 °C. El compresor opera 4 500 h/año a 85 por ciento de la carga nominal y está accionado por un motor eléctrico que tiene una eficiencia de 90 por ciento. Tomando el precio de la electricidad como $0.07/kWh, determine las cantidades de energía y de dinero que se ahorran como resultado de tomar aire del exterior para el compresor en vez de usar el aire interior. Get solution

7-171 Las necesidades de aire comprimido de una planta se satisfacen con un compresor de tornillo de 100 hp, que trabaja a plena carga durante 40 por ciento de su tiempo y queda en marcha en vacío el resto del tiempo durante las horas de operación. El compresor consume 35 por ciento de la potencia nominal cuando está en marcha en vacío y 90 por ciento cuando comprime aire. Las horas anuales de operación de la planta son 3 800 h, y el costo unitario de la electricidad es de $0.075/kWh. Se determina que las necesidades de aire comprimido de la planta durante 60 por ciento del tiempo se pueden satisfacer con un compresor reciprocante de 25 hp que consume 95 por ciento de la potencia nominal cuando comprime aire y no consume potencia cuando no comprime. Se estima que el compresor de 25 hp trabaja 85 por ciento del tiempo. Las eficiencias de los motores de los compresores grandes y pequeños a plena carga o cerca de ésta son de 0.90 y 0.88, respectivamente. La eficiencia del motor grande a 35 por ciento de la carga es de 0.82. Determine las cantidades de energía y dinero que se ahorran como resultado de cambiar al compresor de 25 hp durante 60 por ciento del tiempo. Get solution

7-172 Las necesidades de aire comprimido de una planta se satisfacen mediante un compresor de tornillo de 125 hp. La planta detiene la producción durante una hora cada día, incluyendo los fines de semana, para almuerzo; pero el compresor sigue operando. El compresor consume 35 por ciento de la potencia nominal cuando está en marcha en vacío, y el costo unitario de la electricidad es de $0.09/kWh. Determine las cantidades de energía y de dinero que se ahorran por año como resultado de apagar el compresor durante la pausa para almuerzo. Tome la eficiencia del motor a carga parcial como 84 por ciento. Get solution

7-173 Las necesidades de aire comprimido de una planta se satisfacen con un compresor de 150 hp provisto de un interenfriador, un posenfriador y un secador refrigerado. La planta opera 6 300 h/año, pero el compresor se estima que comprime aire solamente durante un tercio de las horas de operación, es decir, 2 100 horas al año. El compresor está ya sea a marcha en vacío o apagado el resto del tiempo. Las mediciones de temperatura y los cálculos indican que 25 por ciento de la entrada de energía al compresor se quita del aire comprimido como calor en el posenfriador. El COP de la unidad de refrigeración es 2.5, y el costo de la electricidad es $0.95/kWh. Determine las cantidades de energía y de dinero que se ahorran por año como resultado de enfriar el aire comprimido antes de que entre al secador refrigerado. Get solution

7-174 El motor de 1 800 rpm y 150 hp de un compresor se quema y se va a reemplazar ya sea por un motor convencional que tiene una eficiencia a plena carga de 93.0 por ciento y cuesta $9 031, o por un motor de alta eficiencia que tiene una eficiencia de 96.2 por ciento y cuesta $10 942. El compresor opera 4 368 h/año a plena carga, y su operación a carga parcial es despreciable. Si el costo de la electricidad es $0.075/kWh, determine las cantidades de energía y de dinero que esta planta ahorrará adquiriendo el motor de alta eficiencia en vez del convencional. También determine si los ahorros del motor de alta eficiencia justifican la diferencia de precios si la vida útil del motor es de 10 años. Ignore cualquier posible reducción de tarifa por parte de la empresa eléctrica local. Get solution

7-175 El calentamiento de espacios de una planta se obtiene mediante calefactores de gas natural con eficiencia de 80 por ciento. Las necesidades de aire comprimido de la planta se satisfacen con un compresor grande enfriado por líquido refrigerante. El refrigerante del enfriador se enfría por aire en un intercambiador de calor que permite al líquido refrigerante ceder su calor al aire y cuya sección transversal de flujo de aire tiene 1.0 m de altura y 1.0 m de anchura. Durante la operación típica, el aire se calienta de 20 a 52 °C al fluir por el intercambiador de calor. La velocidad promedio del aire en la entrada es 3 m/s. El compresor opera 20 horas al día y 5 días a la semana durante todo el año. Tomando como 6 meses la estación de calefacción (26 semanas) y el costo del gas natural como $1/termia (1 termia _ 100 000 Btu _ 105 500 kJ), determine cuánto dinero se ahorrará desviando el calor de desecho del compresor hacia la planta durante la temporada de calefacción. Get solution

7-176 Los compresores de una planta de producción mantienen las líneas de aire comprimido a una presión (manométrica) de 700 kPa a una elevación de 1 400 m donde la presión atmosférica es de 85.6 kPa. La temperatura promedio del aire es de 15 °C a la entrada del compresor y de 25 °C en las líneas de aire comprimido. La planta opera 4 200 h/año, y el precio promedio de la electricidad es de $0.07/kWh. Tomando la eficiencia del compresor como 0.8, la eficiencia del motor como 0.93 y el coeficiente de descarga como 0.65, determine la energía y el dinero que se ahorran por año sellando una fuga equivalente a un agujero de 3 mm de diámetro en la línea de aire comprimido. Get solution

7-177 La energía que se usa para comprimir aire en Estados Unidos se estima que excede 500 mil billones (0.5 1015) kJ por año. También se estima que 10 a 40 por ciento del aire comprimido se pierde por fugas. Suponiendo, en promedio, que se pierde 20 por ciento del aire comprimido por fugas, y que el costo unitario de electricidad es de $0.07/kWh, determine la cantidad y costo de la electricidad que se desperdicia por año debido a fugas de aire. Problemas de repaso Get solution

7-178 Una máquina térmica cuya eficiencia térmica es 40 por ciento usa un depósito caliente a 1 300 R y un depósito frío a 500 R. Calcule el cambio de entropía de los dos depósitos cuando se transfiere 1 Btu de calor del depósito caliente a la máquina. ¿Esta máquina satisface el principio de incremento de entropía? Si la eficiencia térmica de la máquina térmica se aumenta a 70 por ciento, ¿se satisfará todavía el principio de incremento de entropía? Get solution

7-179 Un refrigerador con un coeficiente de desempeño de 4 transfiere calor de una región fría a _20 °C a una región caliente a 30 °C. Calcule el cambio total de entropía de las regiones cuando se transfiere 1 kJ de calor de la región fría. ¿Se satisface la segunda ley? ¿Este refrigerador satisfará todavía la segunda ley si su coeficiente de desempeño es 6? Get solution

7-180 Calcule la razón de cambio de entropía de todos los componentes de un refrigerador que usa 10 kW de potencia, rechaza 14 kW de calor, y tiene un depósito de alta temperatura a 400 K, y un depósito de baja temperatura a 200 K. ¿Cuál es la razón de enfriamiento producida por este refrigerador? ¿Este refrigerador es completamente reversible? Get solution

7-181 ¿Cuál es la energía interna mínima que puede adquirir el R-134a cuando se le comprime adiabáticamente de 200 kPa y calidad de 85 por ciento a 800 kPa en un sistema cerrado? Get solution

7-182 ¿Es posible enfriar y condensar R-134a hasta líquido saturado desde 1 000 kPa y 180 °C en un sistema cerrado que sufre un proceso isobárico reversible al intercambiar calor con un depósito isotérmico de energía a 100 °C? Get solution

7-183 Se ha sugerido que se puede enfriar aire a 100 kPa y 25 °C comprimiéndolo primero adiabáticamente en un sistema cerrado hasta 1 000 kPa, y luego expandiéndolo adiabáticamente de nuevo a 100 kPa. ¿Es esto posible? Get solution

7-184E ¿Se puede comprimir adiabáticamente 1 lbm de aire a 20 psia y 100 °F en un sistema cerrado hasta 120 psia y un volumen de 3 pies3? Get solution

7-185E Un bloque de 100 lbm de un material sólido cuyo calor específico es 0.5 Btu/lbm • R está a 70 °F. Se calienta con 10 lbm de vapor de agua saturado que tiene una presión constante de 14.7 psia. Determine las temperaturas finales del bloque y del agua, y el cambio de entropía de a) el bloque, b) el agua y c) el sistema completo. ¿Es posible este proceso? ¿Por qué? Get solution

7-186E Un kilogramo de aire está en un dispositivo de cilindro- émbolo que puede intercambiar calor sólo con un depósito a 300 K. Inicialmente, este aire está a 100 kPa y 27 °C. Alguien afirma que el aire se puede comprimir a 250 kPa y 27 °C. Determine si esta afirmación es válida realizando un análisis de la segunda ley del proceso propuesto. Get solution

7-187 Un recipiente rígido contiene 3.2 kg de agua a 140 °C y 400 kPa. Ahora se aplica un trabajo de eje de 48 kJ sobre el sistema, y la temperatura final en el recipiente es de 80 °C. Si el cambio de entropía del agua es cero y el entorno está a 15 °C, determine a) la presión final en el recipiente, b) la cantidad de transferencia de calor entre el recipiente y el entorno, y c) la generación de energía durante el proceso. Respuestas: a) 47.4 kPa, b) 16.3 kJ, c) 0.565 kJ/K Get solution

7-188 Un cilindro horizontal se separa en dos compartimientos mediante un émbolo adiabático sin fricción. Un lado contiene 0.2 m3 de nitrógeno y el otro lado contiene 0.1 kg de helio, ambos inicialmente a 20 °C y 95 kPa. Los lados del émbolo y el lado del helio están aislados. Ahora se agrega calor al lado del nitrógeno desde un depósito a 500 °C hasta que la presión del helio aumenta a 120 kPa. Determine a) la temperatura final del helio, b) el volumen final del nitrógeno, c) el calor transferido al nitrógeno y d) la generación de entropía durante este proceso. Get solution

7-189 Un recipiente rígido de 0.8 m3 contiene bióxido de carbono (CO2) gaseoso a 250 K y 100 kPa. Ahora se enciende un calentador de resistencia eléctrica de 500 W colocado en el recipiente y se mantiene encendido durante 40 minutos, después de ese tiempo se mide la presión del CO2 y se encuentra que es de 175 kPa. Suponiendo que el entorno está a 300 K y usando calores específicos constantes, determine a) la temperatura final del CO2, b) la cantidad neta de transferencia de calor del recipiente y c) la generación de entropía durante este proceso. Get solution

7-190 Se estrangula, de una manera estacionaria, el flujo de gas helio de 300 kPa y 50 °C. Se pierde calor del helio al entorno en la cantidad de 1.75 kJ/kg a 25 °C y 100 kPa. Si la entropía del helio aumenta en 0.25 kJ/kg • K en la válvula, determine a) la presión y temperatura de salida y b) la generación de entropía durante el proceso. Respuestas: a) 265 kPa, 49.7 °C; b) 0.256 kJ/kg • K Get solution

7-191 Entra refrigerante 134a a un compresor como vapor saturado a 200 kPa y a una razón de 0.03 m3/s, y sale a 700 kPa. La entrada de potencia al compresor es de 10 kW. Si el entorno a 20 °C experimenta un aumento de entropía de 0.008 kW/K, determine a) la tasa de pérdida de calor del compresor, b) la temperatura de salida del refrigerante y c) la tasa de generación de entropía. Get solution

7-192 Entra aire a 500 kPa y 400 K a una tobera adiabática a una velocidad de 30 m/s, y sale a 300 kPa y 350 K. Usando calores específicos variables, determine a) la eficiencia isentrópica, b) la velocidad de salida y c) la generación de entropía. Get solution

7-193 Un recipiente aislado que contiene 0.2 m3 de vapor de agua saturado a 350 kPa se conecta a un dispositivo de cilindro-émbolo aislado e inicialmente evacuado. La masa del émbolo es tal que se necesita una presión de 200 kPa para subirlo. Ahora la válvula está ligeramente abierta, y parte del vapor fluye al cilindro, elevando el émbolo. Este proceso continúa hasta que cae la presión en el recipiente a 200 kPa. Suponiendo que el vapor que queda en el recipiente ha sufrido un proceso adiabático reversible, determine la temperatura final a) en el recipiente rígido y b) en el cilindro. Get solution

7-194 Se comprimen adiabáticamente 3 kg de gas helio de 100 kPa y 27 °C a 900 kPa. Si la eficiencia de compresión isentrópica es de 80 por ciento, determine el suministro necesario de trabajo y la temperatura final del helio. Get solution

7-195 Refrigerante 134a a 600 kPa y 100 °C sufre una expansión reversible isotérmica a 200 kPa en un dispositivo de flujo estacionario con una entrada y una salida. Determine la potencia producida por este dispositivo y la tasa de transferencia térmica cuando el flujo másico a través del dispositivo es 1 kg/s. Get solution

7-196 Un inventor afirma haber inventado un dispositivo adiabático de flujo estacionario con una sola entrada-salida, que produce 100 kW cuando expande 1 kg/s de aire de 900 kPa y 300 °C a 100 kPa. ¿Es válida esta afirmación? Get solution

7-197 Usted va a expandir adiabáticamente un gas de 3 MPa y 300 °C a 80 kPa, en un dispositivo de cilindro-émbolo. ¿Cuál de las dos opciones —aire con una eficiencia de expansión isentrópica de 90 por ciento, o neón con una eficiencia de expansión isentrópica de 80 por ciento— producirá el trabajo máximo? Get solution

7-198 En algunos sistemas de refrigeración se usa un tubo capilar adiabático para hacer caer la presión del refrigerante del nivel de condensador al nivel del evaporador. Entra R-134a al tubo capilar como líquido saturado a 50 °C, y sale a _12 °C. Determine la tasa de generación de entropía en el tubo capilar para un flujo másico de 0.2 kg/s. Get solution

7-199 Un compresor comprime de una manera estacionaria aire de 100 kPa y 17 °C a 700 kPa, a razón de 5 kg/min. Determine la entrada mínima de potencia necesaria si el proceso es a) adiabático y b) isotérmico. Suponga que el aire es un gas ideal con calores específicos variables, y desprecie los cambios en energías cinética y potencial. Get solution

7-200 Entra aire a un compresor de dos etapas a 100 kPa y 27 °C y se comprime a 625 kPa. La relación de presión a través de cada etapa es la misma, y el aire se enfría a la temperatura inicial entre las dos etapas. Suponiendo que el proceso de compresión es isentrópico, determine la entrada de potencia al compresor para un flujo másico de 0.15 kg/s. ¿Cuál sería su respuesta si sólo se usara una etapa de compresión? Get solution

7-201 Entra vapor de agua a 6 MPa y 500 °C a una turbina adiabática de dos etapas, a razón de 15 kg/s. Diez por ciento del vapor se extrae al final de la primera etapa a una presión de 1.2 MPa para otro uso. El resto del vapor se expande más en la segunda etapa y sale de la turbina a 20 kPa. Determine la producción de potencia de la turbina, suponiendo que a) el proceso es reversible y b) la turbina tiene una eficiencia isentrópica de 88 por ciento. Get solution

7-202 Entra vapor de agua a una turbina adiabática de dos etapas a 8 MPa y 550 °C. Se expande en la primera etapa a una presión de 2 MPa. Luego se recalienta el vapor a presión constante a 550 °C antes de expandirse en una segunda etapa a una presión de 200 kPa. La potencia de salida de la turbina es 80 MW. Suponiendo una eficiencia isentrópica de 84 por ciento para cada etapa de la turbina, determine el flujo másico necesa- rio del vapor. También muestre el proceso en un diagrama T-s con respecto a las líneas de saturación. Respuesta: 85.8 kg/s Get solution

7-203 Refrigerante 134a a 100 kPa y _20 °C se comprime en un compresor adiabático de 1.3 kW a un estado de salida de 800 kPa y 60 °C. Despreciando los cambios en energías cinética y potencial, determine a) la eficiencia isentrópica del compresor, b) el flujo volumétrico del refrigerante a la entrada del compresor, en L/min, y c) el flujo volumétrico máximo en las condiciones de entrada que puede manejar este compresor adiabático de 0.7 kW sin violar la segunda ley. Get solution

7-204 Un compresor adiabático se va a accionar por una turbina adiabática de vapor directamente acoplada que también está impulsando un generador. El vapor de agua entra a la turbina a 12.5 MPa y 500 °C, a razón de 25 kg/s, y sale a 10 kPa y una calidad de 0.92. El aire entra al compresor a 98 kPa y 295 K a razón de 10 kg/s, y sale a 1 MPa y 620 K. Determine a) la potencia neta alimentada al generador por la turbina y b) la tasa de generación de entropía dentro de la turbina y del compresor durante este proceso. Get solution

7-205 Reconsidere el problema 7-204. Usando software EES (u otro), determine las eficiencias isentrópicas para el compresor y la turbina. Luego use el EES para estudiar cómo la variación de la eficiencia del compresor en el rango de 0.6 a 0.8 y la eficiencia de la turbina en el rango 0.7 a 0.95 afectan el trabajo neto para el ciclo y la entropía generada para el proceso. Grafique el trabajo neto como función de la eficiencia del compresor para eficiencias de turbina de 0.7, 0.8 y 0.9, y explique sus resultados. Get solution

7-206 La explosión de un recipiente de agua caliente en una escuela en Spencer, Oklahoma, en 1982, mató a 7 personas e hirió a otras 33. Aunque el número de tales explosiones ha disminuido drásticamente desde el desarrollo del Código de Recipientes a Presión de la ASME, que exige que los recipientes se diseñen para resistir cuatro veces la operación normal de operación, todavía ocurren como resultado de fallas de las válvulas de alivio de presión y de los termostatos. Cuando un recipiente lleno de un líquido a alta presión y alta temperatura se rompe, la caída repentina de la presión del líquido al valor atmosférico hace que parte del líquido se vaporice instantáneamente y por lo tanto experimente un enorme aumento de volumen. La onda de presión resultante, que se propaga rápidamente, puede causar daño considerable. Considerando que el líquido presurizado en el recipiente llega finalmente al equilibrio con su entorno poco después de la explosión, el trabajo que un líquido presurizado haría si se le permitiera expandirse reversible y adiabáticamente hasta la presión del entorno se puede considerar como la energía explosiva del líquido presurizado. Debido al periodo muy corto de la explosión y a la calma aparente posterior, el proceso de explosión se puede considerar adiabático, sin cambios en las energías cinética y potencial y sin mezcla con el aire. Considere un recipiente de agua caliente de 80 L que tiene una presión de trabajo de 0.5 MPa. Como resultado de algún mal funcionamiento, la presión en el recipiente se eleva a 2 MPa, en cuyo punto estalla el recipiente. Tomando la presión atmosférica como 100 kPa y suponiendo que el líquido en el recipiente está saturado en el momento de la explosión, determine la energía total de explosión del recipiente en términos de la equivalencia de TNT. (La energía de explosión del TNT es alrededor de 3 250 kJ/kg, y 5 kg de TNT pueden provocar la destrucción total de estructuras no reforzadas dentro de un radio de alrededor de 7 m.) Get solution

7-207 Usando los argumentos del problema 7-206, determine la energía total de explosión de una bebida enlatada de 0.35 L que explota a una presión de 1.2 MPa. ¿A cuántos kilogramos de TNT equivale esta energía de explosión? Get solution

7-208 Se expande aire en una turbina adiabática con eficiencia isentrópica de 85 por ciento, de un estado inicial de 2 200 kPa y 300 °C a una presión de salida de 200 kPa. Calcule la temperatura de salida del aire y el trabajo producido por esta turbina por unidad de masa de aire. Get solution

7-209 Se expande aire en una turbina adiabática con eficiencia isentrópica de 90 por ciento, de un estado de entrada de 2 200 kPa y 300 °C a una presión de salida de 200 kPa. Calcule la temperatura de salida del aire, el trabajo producido por esta turbina y la generación de entropía. Respuestas: 319 K, 258 kJ/kg, 0.0944 kJ/kg • K. Get solution

7-210 Para controlar la salida de potencia de una turbina isentrópica de vapor, se coloca una válvula reguladora en la línea de vapor que alimenta la entrada de la turbina, como se muestra en la figura. Se suministra a la entrada de la válvula vapor a 6 MPa y 400 °C, y la presión de escape de la tur- bina se ajusta a 70 kPa. Compare el trabajo producido por esta turbina de vapor, en kJ/kg, cuando la válvula reguladora está totalmente abierta (de modo que no hay pérdida de presión), y cuando está parcialmente cerrada de modo que la presión a la entrada de la turbina es de 3 MPa. Get solution

7-211 Se llenan recipientes de oxígeno comprimiendo el gas oxígeno, como se muestra en la figura. Un recipiente de 1 m3 inicialmente al vacío se va a llenar hasta 13 000 kPa mientras la temperatura del oxígeno en el recipiente permanece constante a 20 °C con este sistema. Se usa un compresor isentrópico. El oxígeno entra a este compresor con una presión y temperatura constantes de 150 kPa y 20 °C. Determine el trabajo total que necesita el compresor y la transferencia total de calor del recipiente de oxígeno. Get solution

7-212 Dos recipientes rígidos están conectados por una válvula. El recipiente A está aislado y contiene 0.3 m3 de vapor de agua a 400 kPa y calidad de 60 por ciento. El recipiente B no está aislado y contiene 2 kg de vapor de agua a 200 kPa y 250 °C. Ahora se abre la válvula y fluye vapor del recipiente A al B hasta que la presión en el recipiente A cae a 200 kPa. Durante este proceso, se transfieren 300 kJ de calor del recipiente B al entorno a 17 °C. Suponiendo que el vapor que queda dentro del recipiente A ha sufrido un proceso reversible adiabático, determine a) la temperatura final en cada recipiente y b) la entropía generada durante este proceso. Get solution

7-213 Se transfiere calor uniformemente a agua hirviente en la cacerola a través de su fondo plano a razón de 500 W. Si las temperaturas de las superficies interna y externa del fondo del recipiente son de 104 y 105 °C respectivamente, determine la tasa de generación de entropía dentro del fondo de la cacerola, en W/K. Get solution

7-214 Un elemento calentador de resistencia eléctrica de 1 200 W con diámetro de 0.5 cm se introduce en 40 kg de agua inicialmente a 20 °C. Suponiendo que el recipiente de agua está bien aislado, determine cuánto tiempo tardará este calentador en elevar la temperatura del agua a 50 °C. También determine la entropía generada durante este proceso, en kJ/K. Get solution

7-215 En las grandes plantas termoeléctricas, el agua de alimentación se calienta con frecuencia en calentadores de tipo cerrado, que son básicamente intercambiadores de calor, mediante el vapor de agua extraído de la turbina en alguna etapa. El vapor entra al calentador de agua de alimentación a 1 MPa y 200 °C, y sale como líquido saturado a la misma presión. El agua de alimentación entra al calentador a 2.5 MPa y 50 °C y sale 10 °C por debajo de la temperatura de salida del vapor. Despreciando pérdidas de calor por las superficies externas del calentador, determine a) la relación de los flujos másicos del vapor extraído y del agua de alimentación a través del calentador y b) el cambio total de entropía para este proceso por unidad de masa del agua de alimentación. Get solution

7-216 Reconsidere el problema 7-215. Usando software EES (u otro), investigue el efecto del estado del vapor a la entrada del calentador de agua de alimentación. Suponga que la entropía del vapor extraído es constante al valor para 1 MPa, 200 °C y disminuya la presión del vapor extraído de 1 MPa a 100 kPa. Grafique tanto la relación de los flujos másicos del vapor extraído y del agua de alimentación a través del calentador, como el cambio total de entropía para este proceso por unidad de masa del agua de alimentación, como funciones de la presión de extracción. Get solution

7-217E Un recipiente rígido de 5 pies3 contiene inicialmente refrigerante 134a a 80 psia y calidad 100 por ciento. El recipiente está conectado por una válvula a una línea de suministro que lleva refrigerante 134a a 160 psia y 80 °F. La válvula se abre ahora para permitir que el refrigerante entre al recipiente, y se cierra cuando se observa que el recipiente contiene sólo líquido saturado a 120 psia. Determine a) la masa del refrigerante que entró al recipiente, b) la cantidad de transferencia de calor con el ambiente a 100 °F y c) la entropía generada durante este proceso. Get solution

7-218 Una casa solar pasiva que pierde calor al exterior a 3 °C a una tasa promedio de 50 000 kJ/h, se mantiene a 22 °C todo el tiempo durante una noche de invierno durante 10 h. La casa debe calentarse por 50 contenedores de vidrio, cada uno de los cuales contiene 20 L de agua que se calienta a 80 °C durante el día absorbiendo la energía solar. Un calentador de apoyo de resistencia eléctrica de 15 kW, controlado por termostato, se enciende siempre que es necesario para mantener la casa a 22 °C. Determine cuánto tiempo estuvo encendido el sistema de calefacción eléctrica en esa noche, y la cantidad de entropía generada durante la noche. Get solution

7-219 Un cuarto bien sellado de 4 m 5 m 7 m se debe calentar mediante 1 500 kg de agua líquida contenida en un recipiente que está colocado en el cuarto. El cuarto pierde calor al aire exterior a 5 °C a una tasa promedio de 10 000 kJ/h. El cuarto está inicialmente a 20 °C y 100 kPa, y se mantiene a una temperatura de 20 °C todo el tiempo. Si el agua caliente ha de satisfacer las necesidades de calefacción de este cuarto durante un periodo de 24 h, determine a) la temperatura mínima del agua cuando se trae al cuarto y b) la entropía generada durante un periodo de 24 h. Suponga constantes los calores específicos tanto del aire como del agua a la temperatura del cuarto. Get solution

7-220 Considere un cilindro horizontal rígido bien aislado dividido en dos compartimientos por un émbolo que tiene movimiento libre pero no permite que ningún gas se fugue al otro lado. Inicialmente, un lado del émbolo contiene 2 m3 de gas N2 a 250 kPa y 100 °C mientras el otro contiene 1 m3 de gas He a 250 kPa y 25 °C. Ahora se establece el equilibrio térmico en el cilindro como resultado de la transferencia de calor a través del émbolo. Usando calores específicos constantes a temperatura ambiente, determine a) la temperatura final de equilibrio en el cilindro y b) la generación de entropía durante este proceso. ¿Cuál sería su respuesta si el émbolo no pudiera moverse libremente? Get solution

7-221 Reconsidere el problema 7-220. Usando el software EES (u otro), compare los resultados para calores específicos constantes con los obtenidos usando los calores específicos variables incluidos en las funciones de EES. Get solution

7-222 Repita el problema 7-220 suponiendo que el émbolo está hecho de 5 kg de cobre, inicialmente a la temperatura promedio de los dos gases en ambos lados. Get solution

7-223 Un recipiente rígido aislado de 5 m3 contiene aire a 500 kPa y 57 °C. Ahora se abre una válvula conectada al recipiente, y se deja escapar aire hasta que la presión interior cae a 200 kPa. La temperatura del aire durante este proceso se mantiene constante mediante un calentador eléctrico de resistencia colocado en el recipiente. Determine a) la energía eléctrica suministrada durante este proceso y b) el cambio total de entropía. Respuestas: a) 1 501 kJ, b) 4.40 kJ/K Get solution

7-224 Un dispositivo de cilindro-émbolo aislado contiene inicialmente 0.02 m3 de vapor húmedo de agua con una calidad de 0.1 a 100 °C. Ahora se pone en el cilindro un poco de hielo a _18 °C. Si el cilindro contiene líquido saturado a 100 °C cuando se establece el equilibrio térmico, determine a) la cantidad de hielo agregado y b) la generación de entropía durante este proceso. La temperatura de fusión y el calor de fusión del hielo a presión atmosférica son 0 °C y 333.7 kJ/kg. Get solution

7-225 Considere una botella de 10 L en la que se ha hecho el vacío, rodeada por la atmósfera a 90 kPa y 27 °C. Ahora se abre una válvula en el cuello de la botella y se deja entrar el aire atmosférico. El aire atrapado en la botella finalmente alcanza el equilibrio térmico con la atmósfera como resultado de la transferencia de calor a través de la pared de la botella. La válvula permanece abierta durante el proceso de modo que el aire atrapado también llega al equilibrio mecánico con la atmósfera. Determine la transferencia neta de calor a través de la pared de la botella y la generación de entropía durante este proceso de llenado. Respuestas: 0.90 kJ, 0.0030 kJ/K Get solution

7-226 a) Fluye agua por una ducha de una manera estacionaria a una razón de 10 L/min. Un calentador eléctrico de resistencia colocado en el tubo de agua calienta el agua de 16 a 43 °C. Tomando la densidad del agua como 1 kg/L, determine la alimentación de potencia al calentador, en kW, y la tasa de generación de entropía durante este proceso, en kW/K. b) En un esfuerzo por conservar la energía, se propone pasar el agua drenada tibia a 39 °C por un intercambiador de calor para precalentar el agua fría de entrada. Si el intercambiador de calor tiene una efectividad de 0.50 (es decir, si recupera sólo la mitad de la energía que podría transferirse del agua drenada al agua fría de entrada), determine la alimentación de potencia eléctrica necesaria en este caso y la reducción en la tasa de generación de entropía en la sección de calentamiento por resistencia. Get solution

7-227 Usando software EES (u otro), determine la entrada de trabajo a un compresor de etapas múltiples para un conjunto dado de presiones de entrada y salida para cualquier número de etapas. Suponga que las relaciones de presión a través de cada etapa son idénticas y el proceso de compresión es politrópico. Ponga en lista y grafique el trabajo del compresor contra el número de etapas para P1 _ 100 kPa, T1 _ 25 °C, P2 _ 1 000 kPa y n _ 1.35 para aire. Con base en esta gráfica, ¿puede usted justificar el uso de compresores con más de tres etapas? Get solution

7-228 Considere el turbocargador de un motor de combustión interna. Los gases de escape entran a la turbina a 450 °C a una razón de 0.02 kg/s, y salen a 400 °C. El aire entra al compresor a 70 °C y 95 kPa a razón de 0.018 kg/s y sale a 135 kPa. La eficiencia mecánica entre la turbina y el compresor es de 95 por ciento (5 por ciento del trabajo de la turbina se pierde durante su transmisión al compresor). Usando las propiedades del aire para los gases de escape, determine a) la temperatura del aire a la salida del compresor y b) la eficiencia isentrópica del compresor. Get solution

7-229 Un dispositivo de cilindro-émbolo aislado de 0.25 m3 contiene inicialmente 0.7 kg de aire a 20 °C. En este estado, el émbolo se puede mover libremente. Ahora se admite al interior del cilindro aire a 500 kPa y 70 °C de una línea de suministro, hasta que el volumen aumenta en 50 por ciento. Usando calores específicos constantes a temperatura ambiente, determine a) la temperatura final, b) la cantidad de masa que ha entrado, c) el trabajo realizado y d) la generación de entropía. Get solution

7-230 Cuando la transportación de gas natural por una tubería no es factible por razones económicas, se licua primero usando técnicas de refrigeración no convencionales y luego se transporta en tanques superaislados. En una planta de licuefacción de gas natural, el gas natural licuado (LNG, por sus siglas en inglés) entra a una turbina criogénica a 30 bar y -160 °C, a razón de 20 kg/s, y sale a 3 bar. Si la turbina produce 115 kW de potencia, determine la eficiencia de la turbina. Tome la densidad del LNG como 423.8 kg/m3. Get solution

7-231 Un recipiente de volumen constante lleno con 2 kg de aire rechaza calor a un depósito térmico a 300 K. Durante el proceso, la temperatura del aire en el recipiente disminuye hasta la temperatura del depósito. Determine las expresiones para los cambios de entropía para el recipiente y el depósito, y el cambio total de entropía o entropía generada de este sistema aislado. Grafique estos cambios de entropía como funciones de la temperatura inicial del aire. Comente sus resultados. Suponga calores específicos del aire constantes a 300 K. Get solution

7-232 Una máquina térmica recibe calor de un recipiente de volumen constante lleno con 2 kg de aire. La máquina produce trabajo que se almacena en un depósito de trabajo, y rechaza 400 kJ de calor a un depósito térmico a 300 K. Durante el proceso, la temperatura del aire en el recipiente disminuye a 300 K. a) Determine la temperatura inicial del aire que elevará al máximo el trabajo y la eficiencia térmica de la máquina. b) Evalúe el cambio total de entropía de este sistema aislado, el trabajo producido y la eficiencia térmica para la temperatura inicial del aire en el recipiente del inciso a), y a 100 K arriba y debajo de la respuesta al inciso a). c) Grafique la eficiencia térmica y la generación de entropía como funciones de la temperatura inicial del aire. Comente sobre sus respuestas. Suponga calores específicos para el aire a 300 K. Get solution

7-233 Para un gas ideal con calores específicos constantes, demuestre que las eficiencias isentrópicas del compresor y la turbina se pueden escribir como


 Los estados 1 y 2 representan los estados de entrada y salida del compresor, y los estados 3 y 4 representan los estados de entrada y salida de la turbina. Get solution

7-234 Comenzando con la ecuación de Gibbs, du = Tds – Pdv, obtenga la expresión para el cambio en la energía interna de un gas ideal con calores específicos constantes durante el proceso isentrópico, Pv k = constante. Get solution

7-235 La temperatura de un gas ideal con calores específicos constantes está dada como función de la entropía específica y el volumen específico como T(s,v) = Av1–k exp(s/cv) donde A es una constante. Determine la relación T-v para este gas ideal que sufre un proceso isentrópico. Get solution

7-236 Un gas ideal sufre un proceso reversible, isotérmico, de flujo estacionario. Despreciando los cambios en las energías cinética y potencial del flujo y suponiendo calores específicos constantes, a) obtenga la expresión para la transferencia térmica por unidad de flujo másico para el proceso, y b) compare este resultado con el obtenido a partir de qnet = _Tds para el proceso. Get solution

7-237 La temperatura de un gas ideal con calores específicos constantes está dada como función de la entropía específica y de la presión como T(s,P) = AP(k–1)/k exp(s/cp), donde A es una constante. Para un proceso reversible a presión constante, encuentre una expresión para la transferencia térmica por unidad de masa como función de cp y T, usando Q = _Tds. Compare este resultado con el obtenido por la aplicación de la primera ley al sistema cerrado que sufre un proceso a presión constante. Get solution

7-238 Considere una compresión de dos etapas con proceso de interenfriamiento, cuando el compresor de baja presión tiene una eficiencia isentrópica de nC,L, y el compresor de alta presión tiene una eficiencia isentrópica de nC,H. Determine la presión intermedia a la cual debe tener lugar el interenfriamiento para reducir al mínimo el trabajo del compresor cuando los gases de salida del compresor de baja presión se enfrían a la temperatura de entrada al compresor. Get solution

7-239 Se condensa vapor de agua a temperatura constante de 30 °C cuando fluye por el condensador de una planta eléctrica, rechazando calor a razón de 55 MW. La tasa de cambio de entropía del vapor al fluir por el condensador es a) _1.83 MW/K b) _0.18 MW/K c) 0 MW/K d) 0.56 MW/K e) 1.22 MW/K Get solution

7-240 Se comprime vapor de agua de 6 MPa y 300 °C a 10 MPa, isentrópicamente. La temperatura final del vapor es a) 290 °C b) 300 °C c) 311 °C d) 371 °C e) 422 °C Get solution

7-241 Una manzana con una masa promedio de 0.12 kg y calor específico promedio de 3.65 kJ/kg • °C se enfría de 25 °C a 5° C. El cambio de entropía de la manzana es a) –0.705 kJ/K b) –0.254 kJ/K c) –0.0304 kJ/K d) 0 kJ/K e) 0.348 kJ/K Get solution

7-242 Un dispositivo de cilindro-émbolo contiene 5 kg de vapor de agua saturado a 3 MPa. Ahora se rechaza calor del cilindro a presión constante hasta que el vapor de agua se condensa por completo, de modo que el cilindro contiene líquido saturado a 3 MPa al final del proceso. El cambio de entropía del sistema durante ese proceso es a) 0 kJ/K b) _3.5 kJ/K c) _12.5 kJ/K d) _17.7 kJ/K e) _19.5 kJ/K Get solution

7-243 Se comprime gas helio de 1 atm y 25 °C a una presión de 10 atm, adiabáticamente. La mínima temperatura del helio después de la compresión es a) 25 °C b) 63 °C c) 250 °C d) 384 °C e) 476 °C Get solution

7-244 Se expande vapor de agua en una turbina adiabática de 4 MPa y 500 °C a 0.1 MPa, a razón de 2 kg/s. Si el vapor de agua sale de la turbina como vapor saturado, la producción de potencia de la turbina es a) 2 058 kW b) 1 910 kW c) 1 780 kW d) 1 674 kW e) 1 542 kW Get solution

7-245 Se expande gas argón en una turbina adiabática de 3 MPa y 750 °C a 0.2 MPa a razón de 5 kg/s. La producción máxima de potencia de la turbina es a) 1.06 MW b) 1.29 MW c) 1.43 MW d) 1.76 MW e) 2.08 MW Get solution

7-246 Una unidad de masa de una sustancia sufre un proceso irreversible del estado 1 al estado 2, ganando calor del entorno a la temperatura T en la cantidad de q. Si la entropía de la sustancia es s1 en el estado 1, y s2 en el estado 2, el cambio de entropía de la sustancia, _s, durante este proceso es a) _s _ s2 _ s1 b) _s s2 _ s1 c) _s _ s2 _ s1 d) _s _ s2 _ s1 _ q/T e) _s s2 _ s1 _ q/T Get solution

7-247 Una unidad de masa de un gas ideal a la temperatura T sufre un proceso isotérmico reversible de la presión P1 a la presión P2 mientras pierde calor al entorno a la temperatura T en la cantidad de q. Si la constante del gas es R, el cambio de entropía del gas _s durante ese proceso es a) _s _ R ln(P2/P1) b) _s _ R ln(P2/P1) _ q/T c) _s _ R ln(P1/P2) d) _s _ R ln(P1/P2) _ q/T e) _s _ 0 Get solution

7-248 Se comprime aire desde condiciones de medio ambiente a una presión especificada de manera reversible por dos compresores: uno isotérmico y el otro adiabático. Si _sisot significa el cambio de entropía del aire durante la compresión reversible isotérmica, y _sadia, durante la compresión reversible adiabática, la expresión correcta respecto al cambio de entropía del aire por unidad de masa es a) _sisot _ _sadia _ 0 b) _sisot _ _sadia 0 c) _sadia 0 d) _sisot _ 0 e) _sisot _ 0 Get solution

7-249 Se comprime gas helio de 27° C y 3.50 m3/kg a 0.775 m3/kg de manera reversible y adiabática. La temperatura del helio después de la compresión es a) 74 °C b) 122 °C c) 547 °C d) 709 °C e) 1 082 °C Get solution

7-250 Se pierde calor a través de un muro plano, de una manera estacionaria, a razón de 600 W. Si las temperaturas de las superficies interna y externa del muro son 20 °C y 5 °C, respectivamente, la tasa de generación de entropía dentro del muro es a) 0.11 W/K b) 4.21 W/K c) 2.10 W/K d) 42.1 W/K e) 90.0 W/K Get solution

7-251 Se comprime aire, de una manera estacionaria y adiabáticamente, de 17 °C y 90 kPa a 200 °C y 400 kPa. Suponiendo calores específicos constantes para el aire a temperatura ambiente, la eficiencia isentrópica del compresor es a) 0.76 b) 0.94 c) 0.86 d) 0.84 e) 1.00 Get solution

7-252 Se expande gas argón en una turbina adiabática, de una manera estacionaria, de 600 °C y 800 kPa a 80 kPa, a razón de 2.5 kg/s. Para eficiencia isentrópica de 80 por ciento, la potencia producida por la turbina es a) 240 kW b) 361 kW c) 414 kW d) 602 kW e) 777 kW Get solution

7-253 Entra agua a una bomba, de una manera estacionaria, a 100 kPa y una razón de 35 L/s, y sale a 800 kPa. Las velocidades de flujo a la entrada y a la salida son iguales, pero la salida de la bomba donde se mide la presión de descarga está a 6.1 m arriba de la entrada a la bomba. El suministro mínimo de potencia a la bomba es a) 34 kW b) 22 kW c) 27 kW d) 52 kW e) 44 kW Get solution

7-254 Se comprime aire a 15 °C, de una manera estacionaria e isotérmicamente, de 100 kPa a 700 kPa a razón de 0.12 kg/s. El suministro mínimo de potencia al compresor es a) 1.0 kW b) 11.2 kW c) 25.8 kW d) 19.3 kW e) 161 kW Get solution

7-255 Se comprime aire, de una manera estacionaria e isentrópicamente, de 1 atm a 16 atm en un compresor de dos etapas. Para minimizar el trabajo total de compresión, la presión intermedia entre las dos etapas debe ser a) 3 atm b) 4 atm c) 8.5 atm d) 9 atm e) 12 atm Get solution

7-256 Entra gas helio, de una manera estacionaria, a una tobera adiabática a 500 °C y 600 kPa a baja velocidad, y sale a una presión de 90 kPa. La velocidad más alta posible del gas helio a la salida de la tobera es a) 1 475 m/s b) 1 662 m/s c) 1 839 m/s d) 2 066 m/s e) 3 040 m/s Get solution

7-257 Gases de combustión con una relación de calores específicos de 1.3 entran de una manera estacionaria a una tobera adiabática a 800 °C y 800 kPa con baja velocidad, y salen a una presión de 85 kPa. La temperatura más baja posible de los gases de combustión a la salida de la tobera es a) 43 °C b) 237 °C c) 367 °C d) 477 °C e) 640 °C Get solution

7-258 Entra vapor de agua, de una manera estacionaria, a una turbina adiabática a 400 °C y 5 MPa, y sale a 20 kPa. El porcentaje más alto de masa de vapor que condensa a la salida de la turbina y sale de la turbina como líquido es a) 4% b) 8% c) 12% d) 18% e) 0% Get solution

7-259 Entra agua líquida a un sistema adiabático de tubería a 15 °C a razón de 8 kg/s. Si la temperatura del agua sube en 0.2 °C durante el flujo debido a la fricción, la tasa de generación de entropía en la tubería es a) 23 W/K b) 55 W/K c) 68 W/K d) 220 W/K e) 443 W/K Get solution

7-260 Se va a comprimir agua líquida por una bomba cuya eficiencia isentrópica es de 75 por ciento, de 0.2 MPa a 5 MPa, a razón de 0.15 m3/min. La entrada necesaria de potencia a esta bomba es a) 4.8 kW b) 6.4 kW c) 9.0 kW d) 16.0 kW e) 12 kW Get solution

7-261 Entra vapor de agua a una turbina adiabática a 8 MPa y 500 °C a razón de 18 kg/s, y sale a 0.2 MPa y 300 °C. La tasa de generación de entropía en la turbina es a) 0 kW/K b) 7.2 kW/K c) 21 kW/K d) 15 kW/K e) 17 kW/K Get solution

7-262 Se comprime gas helio, de una manera estacionaria, de 90 kPa y 25 °C a 800 kPa a razón de 2 kg/min con un compresor adiabático. Si el compresor consume 80 kW de potencia al operar, la eficiencia isentrópica de este compresor es a) 54% b) 80.5% c) 75.8% d) 90.1% e) 100% Get solution